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Abstract

The HPVM project provides software which enables high-performance computing
on clusters of PCs and workstations using standard supercomputing APIs such as
MPI, SHMEM Put/Get, and Global Arrays. HPVMs—High-Performance Virtual
Machines—are surprisingly competitive with MPP systems, such as the IBM SP2
and Cray T3D. The Illinois HPVM achieves impressive low-level communication
performance across the cluster: one-way latencies of around 11 µsec and bandwidths
> 50 MBytes/sec—even for small packets (< 256 bytes). Performance at higher levels,
such as MPI, is expected to be approximately 17µsec latency and also > 50 MByte/sec
bandwidth.

Current elements of the HPVM project are: Illinois Fast Messages (FM), MPI-FM,
FM-DCS (Dynamic Coscheduling), Put/Get-FM, and Global Arrays-FM. This software
is in use at dozens of sites.

1 Introduction

The advent of high-performance microprocessors and their integration into low cost computing
systems is causing a fundamental realignment in the way that high-performance computing is used
and delivered. As microprocessors have continued to increase in performance, they have approached
the performance of the fastest vector processors and, because of their low cost, have become the
building block of choice for high-performance parallel computing systems. Machines such as the
Intel Paragon [12], Thinking Machines CM-5 [24], IBM SP2 [11], and, more recently, SGI/Cray’s
T3D [5], T3E [19], and Origin 2000 [20] are all based on microprocessors, and combine them in
parallel configurations to achieve high performance. This unification of processor designs between
high-performance computers and the desktop yield interesting synergies: high-end systems can
benefit from low-end software, and high-end systems can leverage high-volume subassemblies such
as processors, system boards, or even entire systems. The primary remaining distinguishing feature
of high-performance systems from distributed systems is the speed of communication and efficiency
of coordination.

While parallel machines typically exploit high-performance custom networks, high-performance
commodity networks are becoming widely available at reasonable cost [2, 3, 7, 10]. While it may
be some time before these networks are pervasive, their ready availability makes building machine
clusters with high-performance interconnects feasible. For example, Myricom’s Myrinet [2] hardware
is capable of link speeds of 160MBytes/sec and switch latencies of under a microsecond. The advent
of such high-performance networks coupled with gigaflop microprocessors makes high-performance

1



2

computing on clusters an attractive alternative. One of our goals in the High Performance Virtual
Machines (HPVM) project is to deliver high-performance computing from distributed computational
and network resources.

Based on an opportunity which arises from the availability of high speed interconnects and recent
advances in communication technology, we are trying to unify the two major cluster models: resource
stealing (to increase job throughput) and dedicated cluster (to achieve high aggregate performance).
The resource stealing model, pioneered by systems such as Condor [14] and Utopia [28] and now
commercialized in systems such as the Load Sharing Facility [23], exploit heterogeneous, shared
resources connected by low-performance networks and harness them to achieve high throughput of
sequential jobs. If parallel jobs are supported, they are efficient only if they are loosely-coupled (e.g.
as in PVM). The dedicated cluster model (e.g. the IBM SP2 or Berkeley NOW) exploit homogeneous,
dedicated resources connected by a high speed interconnect to achieve high performance. Efficient
coordination can be achieved because resources are dedicated and uniform.

The objective of the HPVM project is to unify these models to deliver high-performance parallel
computing on shared, heterogeneous resources. The critical challenges include:

• delivering high-performance communication to standard, high-level APIs,

• coordinating scheduling and resource management, and

• managing heterogeneity

Delivering high performance presumes the availability of processors, memories, and intercon-
nects with appropriate hardware performance characteristics. In this paper, we address the delivery
of high performance communication. For a discussion of coordinated scheduling—another key aspect
of HPVM—see [21].

Communication performance is a critical aspect of parallel computation, so we have built a series
of low-level and high level communication layers which deliver high-performance communication for
distributed resources. The lowest layer, Illinois Fast Messages (FM) achieves 11 µsec latencies and
bandwidths in excess of 50MBytes/sec. Atop this layer, we have built a range of high level interfaces,
including the Message Passing Interface (MPI), SHMEM Put/Get, and Global Arrays. Indications
from previous versions of FM are that we can deliver the full bandwidth of FM to these higher level
communication layers with only a modest increase in latency.

Together, high-performance communication and coordinated scheduling provide the basis for
high-performance parallel computing on shared, distributed resources. As an initial demonstration
this technology, we ran Zeus-MP, a hydrodynamics code used for cosmology, atop the MPI interface
of HPVM. This code achieves linear speedups and good absolute performance on a cluster of
uniprocessor Pentium Pro Machines. Further performance numbers both for additional high level
APIs and applications will be presented in the talk.

The remainder of the paper is organized as follows. Section 2 summarizes the technological
trends which motivate this work, as well as related work on high-performance communication and
coscheduling. In Section 3, we briefly summarize the design and performance of FM and the high
level communication APIs supported by HPVMs. Section 4 pulls this all together, and describes
performance on the Zeus-MP code. Finally, in Section 5, we briefly summarize the results.

2 Background

An important technology trend is the rapid increase in microprocessors’ computing performance.
Low-cost microprocessors are arguably as powerful today as any computer processors that can
be built. The unavoidable market implication of low-cost microprocessors with high absolute
performance is that high-performance systems must be constructed from scalable ensembles of
microprocessors. Virtually all high-performance computing vendors now market systems based
on ensembles of microprocessors.

In addition to fast microprocessors, fast networks are also a necessity for efficient coordinated
computation. Today, most local area networks are interconnected via 10Mbits/sec Ethernet [17].
However, 10Mbits/sec is far too little bandwidth for network-intensive applications. Fortunately,
paralleling the advances in microprocessor performance, a number of new, higher-bandwidth
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“killer networks” have recently hit the market. These include FDDI [6], 100 Base-T Ethernet [7],
FibreChannel [27], Myrinet [2], and ATM/SONET [3] and currently run from 100Mbits/sec to
over 600 Mbits/sec, with the ability to scale to Gbit/sec bandwidths and beyond.

Unfortunately, software for these new networks generally lags well behind the hardware in terms
of performance. Legacy software structures, designed more for portability/interoperability than for
performance, are still prevalent. The key problems are operating system involvement and redundant
memory copies, both of which add substantial overhead to message processing that can be tolerated
on slow networks, but not on more recent, faster networks. There are a large number of high-
performance communication projects that address these problems by removing the operating system
from the critical path of communication. Instead, the operating system is used solely for initializing
the network interface, establishing connections with other nodes, mapping network interface control
registers and memory buffers into user space, and tearing down connections when communication
is complete. Data transmission—the common case—is performed at user level. This approach is
exemplified by Hamlyn [4], Cranium [15], U-Net [25], and SHRIMP [1]. Since operating systems
are traditionally used for process protection, these systems all exploit the system’s virtual memory
hardware for protection, a much lower-overhead mechanism than system calls.

With fast microprocessors, high-speed networks, and efficient software, PCs are an effective
tool for high-performance computing. In fact, PCs are already an established platform for scientific
computing. PCs are the primary vehicle for CAD tools, numerical software packages such as
MATLAB, and other mathematical/scientific programs that are mainstream for computational
scientists. Nevertheless, HPVM greatly extends the domain of scientific computing on commodity
systems by enabling sets of computers equipped with high-speed networks to solve problems
previously possible only on MPPs and supercomputers.

3 High-performance Communication

While hardware technology has provided high-performance communication’s building blocks—high-
speed links, fast routers, and low-cost network interface cards—traditional software and hardware
system structures make it hard to deliver the hardware performance to applications. In fact, the
predominance of software in introducing delay and overhead has come to be called the “last inch”
problem, a reference to the “last mile” problem faced by telecommunications corporations where
most of the overhead is incurred in the last mile of distance. Traditional networking software (e.g.
TCP/IP) is designed for 10Mbit/sec Ethernet and incurs overheads in the range of 100 µsec per
packet. In contrast, currently-available high-speed networks such as Myrinet are two orders of
magnitude faster.

Because our goal is to match or surpass communication performance in integrated parallel
machines, radical changes in software architecture are necessary. To exploit the full performance of
these high-speed interconnects, we have designed Illinois Fast Messages (FM), a low-level portable
communication interface which efficiently delivers the hardware performance to higher levels. In
the following subsections, we describe first the FM interfaces, and then several of the higher level
communication layers built on top.

3.1 Fast Messages

The FM interface traces its roots to Berkeley Active Messages [26] on the CM-5. The FM 1.1 API
(Table 1) contains functions for sending long and short messages and for extracting messages from
the network. Each message is associated with a handler, a function executing at the receiver and
that stores or processes the message data. What distinguishes FM from other messaging layers is not
the surface API, but the underlying semantics—the service guarantees and control of the memory
hierarchy that FM provides to software built atop FM. Analysis of the literature and our ongoing
studies to support fine-grained parallel computing [13, 22] led to the conclusion that a low-level
messaging layer should provide the following key guarantees, or higher-level messaging layers will
suffer a performance loss:

• Reliable delivery,

• Ordered delivery, and
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• Control over scheduling of communication work (decoupling).

Table 1

FM 1.1 API

Function Operation

FM send(dest,handler,buf,size) Send a long message

FM send 4(dest,handler,i0,i1,i2,i3) Send a four word message
FM extract() Process received messages

We initially implemented the FM 1.1 interface on the Cray T3D and a cluster of SPARCstations
connected by Myrinet. The fact that we were able to port FM to two radically different systems—a
heavily-integrated MPP and a workstation cluster—is a testament to the portability of the interface.
Furthermore, FM 1.1’s latency and bandwidth were not just excellent in absolute terms, but also
substantially better than the vendor-supplied messaging layers on each system (Table 2).

Table 2

FM performance

Performance Cray Cluster
metric PVM FM 1.1 Myrinet API FM 1.1 FM 2.0

Latency (µsecs) 28.0 6.1 102.1 12.0 13.7
Bandwidth (MBytes/sec) 37.5 112.9 4.5 16.1 17.1

Even though FM 1.1 performed well on the latency and bandwidth microbenchmarks, saved
higher-level messaging layers from having to implement reliable, ordered delivery, and allowed control
over communication scheduling, we still observed that much performance was lost when higher-level
messaging layers were implemented on top of FM. We identified three problems:

1. the fact that we allowed control over when communication data is processed, but not how
much data is processed

2. the cost of copying a user-specified buffer merely to prepend a header to it before passing the
data to FM

3. the cost of copying data from FM’s internal buffer into a messaging layer buffer and then into
the user-specified buffer.

To address these problems, we redesigned the FM interface to support data pacing and a novel
concept called streamed messages. Data pacing enables the programmer to limit the amount of data
extracted by FM extract(). And streamed messages are messages that can be sent and extracted
piecewise. Streamed messages not only increase communication pipelining—the receiver can process
a message even before the sender has finished sending it—but also reduce data copying. Using
streamed messages, a messaging layer build atop FM can receive a piece of a message and, using
information in that piece, decide where subsequent pieces of the message should be received to.
Table 3 shows the FM 2.0 interface. While FM 2.0 performs as well as FM 1.1 on microbenchmarks,
it delivers substantially more of the hardware performance to applications—one of the key goals of
FM.

We implemented the FM 2.0 on SPARCstations and, more recently, on a Myrinet cluster of
Pentium Pro-based PCs running Windows NT. What makes the PCs interesting from a high-
performance communication standpoint is that the PCI bridge supports write combining, meaning
that back-to-back writes to sequential addresses are aggregated and sent across the bus in a
high-bandwidth burst transaction. Most other systems perform burst transactions only for DMA
operations. Consequently, FM 2.0’s bandwidth on the PCI-based PCs approaches the full PCI
bandwidth. FM’s peak bandwidth is also much greater than on the SBus-equipped SPARCstations—
52.6MBytes/sec versus 17.1MBytes/sec. In addition, by avoiding the overhead of DMA setup, FM
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Table 3

FM 2.0 API

Function Operation

FM begin message(dest,size,handler) Open a streamed message

FM send piece(stream,buf,size) Add data to a streamed message
FM end message(stream) Close a streamed message

FM extract(maxbytes) Process up to maxbytes of received messages
FM receive(buf,stream,size) Receive data from a streamed message into a buffer

achieves its bandwidth half-power point with message sizes of only 256 bytes. This is an important
result, because most network traffic is comprised of messages of about that size (see, for example, [9]).

3.2 Standard APIs

While low-level layers such as Fast Messages can deliver hardware communication performance,
higher-level layers offer greater functionality, application portability, and ease of use. The problem
is that high-level layers add overhead to communication and generally perform significantly worse
than low-level messaging layers. FM, and specifically, FM 2.0, is designed to reduce the performance
gap between low- and high-level messaging layers. To demonstrate this capability (and to create a
high-performance implementation of a high-level API), we implemented two high-level APIs atop
FM: MPI [16] and Global Arrays [18].

MPI-FM is based on the MPICH code base from Argonne and Mississippi State University [8].
MPICH is implemented as a two-level structure. The Abstract Device Interface (ADI) contains only
a small number of functions (≈25), and the rest of MPI (≈125 functions) is built on top of that.
To run MPI on FM, we needed only port MPICH’s ADI to communicate with FM calls. MPI-FM,
operational since October, 1995, exhibits comparable performance on a Myrinet-connected cluster
of SPARCstation 20s to an IBM SP2 of the same vintage. Not only does MPI-FM deliver lower
latency than that MPP, it also delivers higher bandwdith for messages below two kilobytes. Beyond
two kilobytes, the architecture of the SP2’s MPI implementation, which uses DMA based message
injection, achieves higher bandwidth than the FM implementation, which uses programmed I/O.
Because our PCI-based Pentium Pro systems eliminate much of the data copying bottleneck with
write combining, we expect to deliver much higher bandwidth communication from MPI on that
system. (The port is still in progress.)

Our second HPVM interface, Global Arrays (GA), is a portable programming model that uses
Put/Get semantics for accessing and manipulating sections of large arrays in a shared address space.
The portable GA interface was originally developed on the Cray T3D and is now in use on the Intel
Paragon, IBM SP2, and several shared-memory machines. To port GA to FM, we first ported
the lower-level SHMEM library from the T3D to FM. (The T3D version of GA uses the SHMEM
primitives). SHMEM, like GA, uses a Put/Get interface, but its API closely matches the T3D’s
hardware features and is therefore somewhat challenging to convert to a software version and retain
good performance. In the talk, we will present detailed performance measurements of GA-FM and
SHMEM-FM.

Table 4 shows the status of all the HPVM interfaces we are currently developing. They fall into
three main categories (although HPVM is, of course, not limited to these): message-passing, global
name space, and cache-coherent. These interfaces will allow a variety of parallel programs to easily
migrate to distributed resources. However, true portability implies preserving the performance
model (resource abstraction) in order to port a software architecture without change.

4 Overall Performance

To demonstrate the capabilities provided by the current High Performance Virtual Machines, we
describe the implementation and performance on a high-performance application. As an example,
we use Zeus-MP, a hydrodynamics code produced by the Cosmology NSF Grand Challenge team.
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Table 4

HPVM interfaces

Interface Type Status

Fast Messages Message Passing Available

Message Passing Interface Message Passing Available
Winsock 2 Message Passing Under Development

SHMEM Put/Get Global Name Space Functional
Global Arrays Global Name Space Functional

CORBA Global Name Space Planned

Cached Object System Shared Objects w/ caching Planned

Shared Virtual Memory Shared Address w/ caching Planned

This program is used to model a wide variety of astrophysical phenomenon in three dimensions and
for a variety of boundary conditions. This code does not vectorize well, and generally achieves good
speedups on parallel platforms.
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Fig. 1. Scaled speedup of Zeus-MP on a variety of hardware platforms

The Zeus MP code utilized the MPI application programming interface and was executed
on our new testbed. This environment uses 200Mhz Pentium Pro machines (256KB L2 caches)
and second generation Myrinet (LANai 4.1 boards and 160MByte/sec links). The performance of
distributed resources in our cluster (Figure 1) not only surpassed several recent parallel machines, it
also exceeds performance on a Cray T90 processor with about 4–5 Pentium Pro nodes. To put things
in perspective, comparison to a SGI Power Challenge, equipped with the latest R10000 processors,
shows that Pentium Pros still trail the fastest microprocessors on floating point by a healthy margin.
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5 Summary and Future Work

We have demonstrated MPP class communication performance through a number of communication
interfaces on distributed computational and networking resources. These results raise interesting
opportunities for greater exploitation of distributed resources and also wider availability of high-
performance computing.

While we have made significant strides in making distributed resources attractive vehicles for
high-performance computing, significant research challenges remain. We plan to experiment with
larger clusters, including multiprocessor elements. At present, a 32-node cluster 2-way symmetric
multiprocessor Pentium Pro machines is being deployed at Illinois. In addition, a number of
questions remain about how to achieve effective coordination in a distributed environment. Finally,
the dimensions of heterogeneity, adaptivity and fault tolerance, and the wide area are only beginning
to be explored.

More information on the HPVM project is available from our WWW site,
http://www-csag.cs.uiuc.edu.
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